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Abstract
Physics can be modeled by PDEs or recursively as iterated functions.
A method is presented to decompose iterated functions into Bell polynomi-
als and then into the combinatoric structure Schroeder’s Fourth Problem.
Consistency with complex dynamics is shown by deriving the classification
of fixed points in complex dynamics.

1 Introduction

Stephen Wolfram pointed out in 1986 [7] that the problem of extending tetra-
tion to the complex numbers was actually part of the much larger and more
important problem of unifying the discreet representation of chaotic systems in
mathematics with the continuous representation of chaotic systems in physics,
of unifying maps from iterated functions and flows from PDEs. He maintained
that the duality prevented the derivation of mathematical solutions for contin-
uous chaotic systems as are found in physics. Wolfram suggested at if tetration
could be defined for complex numbers then those results might be generalized
to unify discrete maps and continuous flows.

R. Aldrovandi and L. P. Freitas published Continuous iteration of dynami-
cal maps[1] where the iterated functions of hyperbolic dynamical systems were
decomposed into Bell matrices. The composition of functions then becomes the
multiplication of matices giving continuous iteration by taking the power of di-
agonalized matices. Finally a simplified version of the Navier Stokes equation
is analyzed.

This paper dispenses with the need of matrices by constructing the Taylors
series of an iterated function from Bell polynomials instead of Bell matrices.
Bell polynomials are the derivatives of composite functions and are given by
Faa Di Bruno’s formula[3][9]. Bell numbers or set partitions describe the under-
lying combinatorics behind Bell polynomials. The Bell polynomials in turn are
indexed by the combinatorial structure total partitions[12]. This allows iterated
functions to be constructed by enumerating and then evaluating the total parti-
tions, recovering the Bell polynomials. Not only is the restriction to hyperbolic
dynamical systems removed but consistency with complex dynamics is shown
by deriving the classification of fixed points.



2 The Derivatives of Iterated Functions

Consider the holomorphic function f(z) : C — C and its iterates f'(z),t € N.
The standard convention of using a coordinate translation to set a fixed point
at zero is invoked, f(0) = 0, giving f(z) = 3.°°, {227 for 0 < |z| < R for

n=1 n!
some positive R. Note that f(z) is the exponential generating function of the

sequence fo, f1,..., foo, Where fy = 0 and f; will be written as A\. The expression
f¥ denotes (D7 f(z))¥|.—o .

Note: The symbol ¢ for time assumes ¢ € N, that time is discrete. This allows
the variable n to be used solely in the context of differentiation in this paper.
Beginning with the second derivative each component will be expressed in a
general form using summations and referred to here as Schroeder summations.

2.1 The First Derivative

The first derivative of a function at its fixed point Df(0) = f; is often rep-
resented by A and referred to as the multiplier or the Lyapunov characteristic
number; its logarithm is known as the Lyapunov exponent. Let g(z) = fi=1(2),
then

Df(g(2))

Df'(0) = f(0)

2.2 The Second Derivative

D*f(g(=)) = ["(9(2)g'(2)* + f'(9(2))g" (2)
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Setting g(z) = f!=!(2) results in
D2ft (O) _ f2)\2t72 + ADthfl(O)
When A # 0, a recurrence equation is formed that is solved as a summation.

DAH(0) = X724 AD2H0)
)\0f2>\2t_2
+)\1f2)\2t74



FATE o0
+)\t71f2>\0
t—1
— f2 Z A2t—k1—2 (2)

k1=0

2.3 The Third Derivative

Continuing on with the third derivative,
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Note that the index k; from the second derivative is renamed ko in the
final summation of the third derivative. A certain amount of renumbering is
unavoidable in order to use a simple index scheme.

2.4 The Fourth Derivative

Now the fourth derivative,
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2.5 The n'* Derivative

Let f(z) and g(z) be holomorphic functions, then the Bell polynomials can be
constructed using Faa Di Bruno’s formula. [9]

k1
Do) = 3 ) (242 6

7(n)

D92\
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A partition of n is 7(n), usually denoted by 1¥12%2 ... nFn with ky + 2ks +
--nk, = k; where k; is the number of parts of size i. The partition function
p(n) is a decategorized version of m(n), the function 7(n) enumerates the integer

partitions of n, while p(n) is the cardinality of the enumeration of m(n).
Setting g(z) = f!~1(z) results in
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7(n)
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The Taylors series of f!(z) is derived by evaluating the derivatives of the
iterated function at a fixed point f(0) by setting z = 0 and separating out the
k,, term of the summation that is dependent on D" f¢=1(0).
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and rewriting (D* £)(0) as f
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The remaining p(n) — 1 terms of the summation are only dependent on
DF¥ ft=1(0), where 0 < k < n. Let this partial summation be written as o(n)
with 0(0) =0 and o(1) = 1.

o)=Y (thul(o)fl (W)k )

Rewriting the p(n) — 1 terms of the summation as o(n) will help in writing
a proof by general induction. For n > 1,

D" £(0) = o(n) + AD™ f*7(0) (10)

Theorem 1 The Taylor series of an iterated holomorphic function fi(z) can
be constructed given o fized point where t € N.

Proof. Assume the given fixed point is at zero. The Taylor series of f!(z) can
be constructed for some positive value of R where 0 < |z| < R if and only if
D™ ft(0) can be constructed for every n > 0. prove by strong induction.

Basis Steps:

Case n = 0. By definition D°f%(0) = 0, so D°f*(0) can be constructed.

Case n = 1. From Eq. 1, D! ft(0) = X!, so D! f*(0) can be constructed.

Induction Step: Casen = k. Assume that D* f1(0) can be constructed for all
k where 0 < k < n. Using Eq. 10, D¥ f1(0) = o(k) + AD* ft=1(0). The function
o(k) in only dependent on D°f(0),..., D*f(0) and D*f*(0),..., D%* =1 ft(0).
By the strong induction hypothesis, o(k) can be constructed. Therefore Eq. 10
can be reduced to a geometrical progression based on A that can be represented
by a summation.
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This completes the induction step that D™ f(0) can be constructed for all whole
numbers 7.
The Taylors series for f(z) is

ft(Z) — Z 2_: 0(7'7’) )\jzn (12)

n
n=0 j=0



3 Combinatorics of Iterated Functions

The sum of the numerical coefficients from Equation 1 is 1, Equation 2 is 1,
Equation 3 is 3+ 1 = 4 and Equation 5 is 12+ 4+ 346 + 1 = 26 give the first
four terms of EIS A000311[4], Schroeder’s Fourth Problem or labeled hierarchies.
On page 197 of Riordan’s Combinatorial Identities this combinatoric structure
is listed as the structure associated with Bell polynomials.
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Table 1: Several Combinatoric Structures

Likewise, the number of additive terms are related to EIS A000669[4], unla-
beled hierarchies[5] or series-reduced planted trees. This similar to the manner
in which EIS A000041 — integer partitions are used to index EIS A000110 — set
partitions.

3.1 Set Partitions and Bell polynomials

The following table displays the isomorphisms between the integer partitions of
p(4), the set partitions of by and Bell polynomial Y;. Equation 6 is an analytic
functor that maps the set partitions into the Bell polynomials allowing the
Bell polynomials to be derived directly from the combinatoric structure of set
partitions. See Table 2.

Integer Set Bell

Partitions | Partitions polynomials
1414141 {{1}.{2}.{3}.{4}} g (2)* fP(g(2))
2+1+1 {{1.2},{3}.{4}}, {{1,3}.{2}.{4}}, 69'(2)* g"(2) [ (9(2))

H1h{2,3h{4}}, {{1.43,{2},{3}},
13424}, {31) {{1}.{2}.{34}}

242 ({121,034}, {{L31.{2.4}}, {{143.{2.3}) | 39" (2)” f"(9(2))

341 {({1.2.31.{4}}, {{1.2.4}.(3}} 49'(2) g7 (2) [ (9(2))
{{13.4},(2}}, {{1}.{2.34}}

4 {{1,2,34}} 9D (z) f'(9(2))

Table 2: Isomorphisms of the Bell polynomial Y,

The partition function or integer partitions partition unlabeled items while
the set partitions partition labeled items. Bell polynomials use the integer



partitions as their summation index in Equation 6 because the analytic functor
that maps the set partitions into Bell polynomials “forgets” the labels of the
items. The integer partitions only retain the distinctive topological structure
of the set partitions. Expressing the symmetries of the different topological
structures allows the original set partitions to be recovered.

Figure 1 displays the combinatoric functors associated with the pointing
operator O that are isomorphic to differentiation[6]. This is a visualization of
the fact that b,41 can be generated from b,, by using the pointing operator to
step through the structure of a set partition and inserting a new item at the end
of each set partition’s partition or adding a new partition with a single item.

——> partition creation functor

p—d RO
\<<> \ <> <D <> ——> partition expansion functor

> >—>> B
NGO OO o

Figure 1: Constructing Bell(4) from Bell(3)

3.2 Set Partitions and Total Partitions

The combinatoric structure total partitions was discovered by Ernst Schroeder
while investigating the number of ways that the letters can be parenthesized in
his 1870 paper, Vier combinatorische Probleme[10]. Schroeder wrote the first
paper on iterated functions, Uber iterirte Functionen[11] just one year later, in
what many consider the first work on dynamical systems.
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Figure 2: A total partition decomposed into set partitions

Theorem 2 Recursive set partitions are isomorphic to total partitions.

Proof. Consider the recursive definition of Equation 7. Given that Equation
6 is isomorphic to set partitions and the ways n items can be parenthesised,
Equation 7 can be seen to be isomorphic to the ways n items can be recursively
partitioned or parenthesized which is the total partitions. Il
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Figure 3: A total partition as a Schroeder diagram and a tree

A consequence of this is that because set partitions are represented by Bell
number diagrams, total partitions can be represented by recursive Bell number
diagrams, which will be referred to as Schroeder diagrams. Figure 3 shows an
example. Partitions with one or two items are ignored in the recursion of Bell
number diagrams since hier; = 1 and hiers = 1. Partitions with three or
more items generate further recursive Bell number diagrams as the leaves of the
original Bell number diagram, creating a rooted tree of Bell number diagrams.

A caveat to the isomorphism of total partitions and “recursive set partitions”
is the first term of their sequences is different; for total partitions hiery = 0,
while for set partitions by = 1. A second issue is that for the set partitions
of a Bell number, the single set partition with all items in one partition must
be illegal to prevent the occurrence of trees of infinite depth. This problem is
actually beneficial because this single set partition is isomorphic to a hierarchy
of height 1. This provides a mechanism allowing the set partitions, which are
trees of depth 2, to decompose total partitions of depth 1. Figure 4 shows the
shows the illegal diagrams for b3, by and bs.

> OO

Figure 4: Illegal Schroeder Diagrams

The combinatoric structure total partitions has a related structure unlabeled
hierarchies, which is a “recursive integer partition” and serves as an index to
total partitions in the same way integer partitions index the set partitions. Due
to the symmetries of the total partitions in the Schroeder summations, D f"(0)
only has 33 terms to be evaluated that correspond to the unlabeled hierarchies,
instead of the 2752 terms of total partitions.

An analytic functor that is a recursive version of Equation 6 is constructed
that maps total partitions directly into the Schroeder summations that consti-
tute the derivatives of iterated functions. See Table 2.

Figure 5 provides a visual representation of how recursive set partitions gives
rise to total partitions by using recursive Bell number diagrams and the pointing
operator to construct the total partitions of 4 items from total partitions of 3
items. Figure 5 is a recursive version of Figure 1.
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Figure 5: Constructing hiery from hiers
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4 Classification of Fixed Points

Since this work lies within the domain of complex dynamics, one method to
refute it is to show that it is inconsistent with complex dynamics.

5 Conclusion

Iterated functions are known for their complexity, but they provide a simple tool
for examining the combinatorial structure of Bell polynomials. The question,
what is the combinatorial structure of iterated functions, is raised in Continuous
iteration of dynamical maps[l]. The answer is that total partitions are the
combinatorial structure of iterated functions. Continuous iteration of dynamical
maps uses Bell polynomials in the form of Bell matrices to continuously iterate
functions. The author will be take up the issue of continuously iterated functions
in a later paper.

The Mathematica software files Iterate.m and SchroederSummations.nb used
to compute the first eight derivatives of an iterated function can be found at

http://tetration.org/Resources/Files/Mathematica.

The recent successes of Britto-Cachazo-Feng-Witten recursion[2] and the
validation of the energy spectrum of the Hofstadter Butterfly[8] show instances
where physics can best be modeled using recursion.

Since physics itself is modeled by recursion, this implies that either the
recursion of physics and the recursion of specific physical systems are either the
same or more than one recursive relationship is in effect.

The connection between set partitions and Bell polynomials is well known,
but Riordan’s book Combinatorial Identities also notes an association with
the combinatorial structure known as Schroeder’s Fourth Problem[10], total
partitions[12], or hierarchies|5].

While it can be argued that Riordan implies that total partitions are the
combinatoric structure underlying Bell polynomials, a formal proof will be pre-
sented here for the case of iterated functions. Iterated functions as an arbitrary
number of compositions of a single function are shown to be particularly useful
in demonstrating the connection between Bell polynomials and total partitions.
It will be shown that total partitions are a recursive version of set partitions.
The first four Bell polynomials of iterated functions are derived to add clarity



to the general proofs about Bell polynomials of iterated functions. They will
also explicitly express the related total partition number in terms of coefficients
and in the relationships between the summations used.
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