
The Existence and Uniqueness of the Taylor

Series of Iterated Functions

Daniel Geisler
daniel@danielgeisler.com

August 7, 2016

Abstract

The Ackermann function is comprised of addition, multiplication, ex-
ponentiation, tetration, pentation and so on, formed from an infinite series
of arithmetic operators or hyperoperators. The hyperoperators beyond
addition are recursively defined from their predecessor using iterated func-
tions. Addition, multiplication and exponentiation are defined for com-
plex numbers, but the higher hyperoperators beginning with tetration are
only defined for the whole numbers.

Fractional iteration addresses questions like, ”Do maps have flows?”
and ”Can a function be iterated by a complex value?” The existence and
uniqueness of the Taylors series of iterated functions is proven. In the gen-
eral case, the Taylors series of iterated functions can only be iterated by
whole numbers; it is discrete in time. But in cases consistent with the clas-
sification of fixed points as well as both Schroeder’s equation and Abel’s
equation, complex iterates are defined. This in turn uniquely extends the
hyperoperators like tetration to be defined for complex values.

1 Introduction

The branch of mathematics known as dynamics concerns itself with mathemat-
ical systems that evolve over time. Iterated functions[1, 2, 3, 4] are such a
system and are important in both arithmetic[7] and mathematical physics[1, 5],
where they provide an alternate mathematical model of physics to that of partial
differential equations.

In arithmetic the Ackermann function and the hyperoperators are defined
using iterated functions[7]. There is considerable ongoing interest in extending
tetration from the whole numbers to the real and complex numbers[9, 10]. This
extension can happen by the use of iterated functions in the definition of hy-
peroperators. When maps have flows the iterator is extended from the whole
numbers to the real numbers. Extending the iterator from the whole numbers
to the complex numbers allows the hyperoperators of tetration and beyond to
be defined for complex values.

Fractional iteration[8] can be defined using either Bell[1] and Carleman[3]
infinite matrices, taking advantage of the fact that the composition of functions
can be performed by matrix multiplication. Once a matrix has been diago-
nalized, fractional iterates are found by raising the matrix to the appropriate
power.
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This paper establishes the existence and uniqueness of the Taylor series of
iterated functions as a tool to help solve iterated functional equations and to ex-
tend tetration and the hyperoperations. The Taylor series of iterated functions
advantages over ealier approaches are that it is more general, encompassing both
Schröder’s and Abel’s equation, and it provides more combinatorial insight into
iterated functions.

Iterated functional equations focus on questions like what is the functional
”square root” of a function f(z), solving for g(x) where g(g(x)) = f(x).

Consider the holomorphic function f(z) : C → C with a fixed point at f0
and its iterates f t(z), t ∈ N. This gives f(z) =

∑∞
n=0

fn
n! z

n for 0 ≤ |z| < R
for some positive R. Note that f(z) is the exponential generating function of
the sequence f0, f1, . . . , f∞, where f(f0) = f0 and f1 will be written as λ. The
expression fk

j denotes (Djf(z))k|z=f0 .
The symbol t for time assumes t ∈ N, that time is discrete. This allows

the variable n to be used solely in the context of differentiation in this paper.
Beginning with the second derivative each component will be expressed in a
general form using summations.

2 The Derivatives of Iterated Functions

2.1 The First Derivative

The first derivative of a function at its fixed point Df(f0) ≡ λ is referred to as
the multiplier or the Lyapunov characteristic number; its logarithm is known as
the Lyapunov exponent. Let g(z) = f t−1(z), then

Df(g(z)) = f ′(g(z))g′(z)

= f ′(f t−1(z))Df t−1(z)

=

t−1∏
k1=0

f ′(f t−k1−1(z))

Df t(f0) = f ′(f0)
t

= f t
1 = λt (1)

2.2 The Second Derivative

D2f(g(z)) = f ′′(g(z))g′(z)2 + f ′(g(z))g′′(z)

= f ′′(f t−1(z))(Df t−1(z))2 + f ′(f t−1(z))D2f t−1(z)

Setting g(z) = f t−1(z) results in

D2f t(f0) = f2λ
2t−2 + λD2f t−1(f0)

When λ ̸= 0, a recurrence equation is formed that is solved as a summation.

D2f t(f0) = f2λ
2t−2 + λD2f t−1(f0)

= λ0f2λ
2t−2
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+λ1f2λ
2t−4

+ · · ·
+λt−2f2λ

2

+λt−1f2λ
0

= f2

t−1∑
k1=0

λ2t−k1−2 (2)

2.3 The Third Derivative

Continuing on with the third derivative

D3f(g(z)) = f ′′′(g(z))g′(z)3 + 3f ′′(g(z))g′(z)g′′(z) + f ′(g(z))g′′′(z)

= f ′′′(f t−1(z))(Df t−1(z))3

+3f ′′(f t−1(z))Df t−1(z)D2f t−1(z)

+f ′(f t−1(z))D3f t−1(z)

D3f t(f0) = f3λ
3t−3 + 3f2

2

t−1∑
k1=0

λ3t−k1−5 + λD3f t−1(f0)

= f3

t−1∑
k1=0

λ3t−2k1−3 + 3f2
2

t−1∑
k1=0

t−k1−2∑
k2=0

λ3t−2k1−k2−5 (3)

Note that the index k1 from the second derivative, is renamed k2 in the
final summation of the third derivative. A certain amount of renumbering is
unavoidable in order to use a simple index scheme.

2.4 The nth Derivative

Let f(z) and g(z) be holomorphic functions, then the Bell polynomials can be
constructed using Faa Di Bruno’s formula.

Dnf(g(z)) =
∑
π(n)

n!

k1! · · · kn!
(Dkf)(g(z))

(
Dg(z)

1!

)k1

· · ·
(
Dng(z)

n!

)kn

A partition of n is π(n), usually denoted by 1k12k2 · · ·nkn with k1 + 2k2 +
· · ·nkn = k; where ki is the number of parts of size i. The partition function
p(n) is a decategorized version of π(n); the function π(n) enumerates the integer
partitions of n, while p(n) is the cardinality of the enumeration of π(n).

Setting g(z) = f t−1(z) results in

Dnf t(z) = ∑
π(n)

n!
k1!···kn!

(Dkf)(f t−1(z))
(

Dft−1(z)
1!

)k1

· · ·
(

Dnft−1(z)
n!

)kn
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The Taylor series of f t(z) is derived by evaluating the derivatives of the
iterated function at a fixed point f t(f0) by setting z = 0 and separating out the
kn term of the summation that is dependent on Dnf t−1(f0).

Dnf t(f0) = ∑ n!(Dkf)(f0)
k1!···kn−1!

(
Dft−1(f0)

1!

)k1

· · ·
(

Dnft−1(f0)
(n−1)!

)kn−1

+(Df)(f0)D
nf t−1(f0)

and rewriting (Dkf)(f0) as fk.

Dnf t(f0) = ∑ n!fk
k1!···kn−1!

(
Dft−1(f0)

1!

)k1

· · ·
(

Dn−1ft−1(f0)
(n−1)!

)kn−1

+ λDnf t−1(f0)

The remaining p(n) − 1 terms of the summation are only dependent on
Dkf t−1(f0), where 0 < k < n. Let this partial summation be written as σ(n)
with σ(0) = 0 and σ(1) = 1.

σ(n) =
∑ n!fk

k1! · · · kn−1!

(
Df t−1(f0)

1!

)k1

· · ·
(
Dn−1f t−1(f0)

(n− 1)!

)kn−1

(4)

Rewriting the p(n)− 1 terms of the summation as σ(n) will help in writing
a proof by general induction. For n > 1

Dnf t(f0) = σ(n) + λDnf t−1(f0) (5)

2.5 Existence and Uniqueness of Iterated Functions

Theorem 1 The Taylor series of an iterated holomorphic function f t(z) can
be constructed given a fixed point where t ∈ N.

Proof. Assume the given fixed point is at zero. The Taylor series of f t(z) can
be constructed for some positive value of R where 0 < |z| < R if and only if
Dnf t(f0) can be constructed for every n ≥ 0. Prove by strong induction.

Basis Steps:
Case n = 0. By definition D0f t(f0) = f0, so D0f t(f0) can be constructed.
Case n = 1. From Eq. 1, D1f t(f0) = λt, so D1f t(f0) can be constructed.
Induction Step:
Case. Assume that Dkf t(f0) can be constructed for all k, where 0 ≤ k <

n. Using Eq.5, Dkf t(f0) = σ(k) + λDkf t−1(f0). The function σ(k) in only
dependent on D0f(f0), . . . , D

kf(f0) and Dkf t(f0), . . . , D
(k−1)f t(f0). By the

strong induction hypothesis, σ(k) can be constructed. Therefore Eq.5 can be
reduced to a geometrical progression based on λ that can be represented by a
summation.

Dkf t(f0) =
k−1∑
j=0

σ(k)λj (6)
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This completes the induction step that Dnf t(f0) can be constructed for all
whole numbers n.

The Taylor series for f t(z) is

f t(z) =

∞∑
n=0

n−1∑
j=0

σ(n)

n!
λj(z − f0)

n (7)

�

Theorem 2 The Existence and Uniqueness of the Taylor Series of Iterated
Functions.

Proof. The construction of the the Taylor series of iterated functions proves its
existence, while the uniqueness of Taylor series proves its uniqueness.

�

Theorem 3 The Taylor Series of Iterated Holomorphic Functions are Holo-
morphic.

Proof. Compositions of holomorphic functions are holomorphic.
�

2.6 Classification of Fixed Points and Linearization

Define θ such that θ ∈ R where λ = e2πiθ. If θ is ”badly approximable”[4] to a
rational number, then θ is Diophantine. Most real numbers are Diophantine.

Note that while we have stated our interest in fractional iteration, Eq.7 has
not simplified the summations. The reason is seen upon investigating the simpler
summation of geometrical progression

∑k−1
j=0 λ

j . The standard simplification of
the geometrical progression doesn’t hold where λ is a root of unity. The simpli-
fications are handled on a case by case basis, likewise the fractional iteration or
linearization can’t be said to exist in the general sense. But linearization does
exist most cases.

The historical approach[2] to continuous iterates of functions is to use Schroeder’s
equation where |λ| ̸= 1 or θ is Diophantine and Abel’s equation where λ = 1.
Eq.5 is consistent with both approaches as well as the Classification of Fixed
Points[4].

2.6.1 Classification of Fixed Points in the Complex Plane

• Superattracting : λ = 0

• Hyperbolic: |λ| ̸= 1

– Attracting : |λ| < 1

– Repelling : |λ| > 1

• Parabolic Rationally Neutral : λ = 1

• Rationally Neutral : |λ| = 1 and λk = 1

• Irrationally Neutral : |λ| = 1 and λk ̸= 1
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– Diophantine: θ is Diophantine.

– non-Diophantine: θ is not Diophantine.

The term Diophantine will be used for irrationally neutral fixed points where
θ is Diophantine and the term non-Diophantine will be used for irrationally
neutral fixed points where θ is not Diophantine.

2.6.2 Linearization

Theorem 4 Complex Linearization Theorem The Taylor series of an iter-
ated holomorphic function f t(z) can be constructed given a non-superattracting
fixed point that is not non-Diophantine and where t ∈ C.

Proof. By case.
Case λ not a root of unity or is Diophantine, Schröder’s equation.

f t(z) = f0 + λt(z − f0) +
1

2
f2

λ2t − λt

λ2 − λ
(z − f0)

2

+
1

6
(f3

λ3t − λt

λ3 − λ2
+ 3f2

2

λt−2 (λt − 1) (λt − λ)

(λ− 1)2(λ+ 1)
)(z − f0)

3

+ . . . (8)

Case λ = 1, Abel’s equation.

f t(z) = z +
1

2
tf2(z − f0)

2 +
1

12
(3(t2 − t)f2

2 + 2tf3)(z − f0)
3 + . . . (9)

Case λk = 1 with τ = t/k.

f t(z) = z +
1

2
τf2(z − f0)

2 +
1

12
(3(τ2 − τ)f2

2 + 2τf3)(z − f0)
3 + . . . (10)

�

Theorem 5 The Existence and Uniqueness of the Linearization of It-
erated Functions The linearization of an iterated holomorphic function f t(z)
exists and is unique given a non-superattracting fixed point that is not non-
Diophantine and where t ∈ C.

Proof. By Theorem 2 and Theorem 4 there are three cases to consider - λ not
a root of unity or is Diophantine, λ = 1, and λk = 1 with τ = t/k. In each
case a linearization can be constructed, thus the linearization exists. Once again
consider the three cases, each representing a different topological conjugacy. But
in each of the three cases, the linearization represents all posible homomorphic
functions for that topological conjugacy Eq. 8, 9 10. The topological conjugacy
imposes the uniqueness of the three cases, but each case constructs all posible
solutions for each case. Therefore it is unique, ignoring specific examples of the
general case. So the linearization of an iterated holomorphic function f t(z) is
proven to exists and be unique upto the fixed point.

�
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2.6.3 Iterated Sine Function

An example of linearization is the sin(z) function that has a fixed point at zero
and it’s first derivitive λ = 1.

sint(z) = z − t

6
z3 +

(
t2

24
− t

30

)
z5 +

(
− 5t3

432
+

t2

45
− 41t

3780

)
z7

+

(
35t4

10368
− 71t3

6480
+

67t2

5670
− 4t

945

)
z9 + . . .

3 Extending The Hyperoperators

Let a ↑m b be the Conway chained arrow notation for the mth hyperoperator
after multiplication. Then a ↑ b ≡ ab is exponentiation and a ↑2 b ≡ ba is
tetration and so on.

3.1 Extending Tetration

In extending tetration to the complex numbers by linearization it is useful to
note the locii of a for za where λ = e2πiθ. The locii of a will be referred to as
the tetration boundary of convergence since its interior has the condition that
|λ| < 1.

Figure 1: Tetration Mandelbrot Set by Period

The large red kidney shaped area, in Fig. 3.1, is the tetration area of con-
vergence which is period one. The black areas show where the exponential map
escapes to infinity.

Theorem 6 The Tetration Boundary of Convergence The tetration bound-

ary of convergence is a = ee
2iπθ−e2iπθ

where θ ∈ R and 0 ≤ θ ≤ 1.

Proof.
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Figure 2: Tetration Boundary of Convergence

Let az =
∑∞

n=0
an

n! z
n with a0 as a fixed point for az. The first derivitive

evaluated at a fixed point gives λ, therefore

Daz = Delog(a)z = log(a)az

and

λ = log(a)az|z=a0 = log(a)aa0 = log(a)a0 = log(aa0) = log(a0).

Since λ = e2πiθ = log (a0), we have ao = ee
2πiθ

. The definition of an exponential

map’s fixed point a0 = aa0 gives a = a
1
a0
0 . Thus

a = ee
2iπθ−e2iπθ

.

�

3.2 Existence and Uniqueness of Hyperoperators

Theorem 7 Assume a ↑k z has a non-superattracting fixed point and is not
non-Diophantine, where 0 < k < m and k,m ∈ Z+. Then the hyperoperator
a ↑m b is defined, where a, b ∈ C and can be constructed.

Proof. By strong induction.
Basis Step:
Case k = 1. Given a ↑k b = a ↑ b is defined, holomorphic and has a non-

superattracting fixed point and is not non-Diophantine, let f(z) ≡ a ↑ z, then
a ↑2 b ≡ f b(1). Thus a ↑2 b is defined.

Induction Step:
Case k = i− 1. Given a ↑1 b through a ↑i−1 b are defined, holomorphic

and have a non-superattracting fixed point and are not non-Diophantine, let
f(z) ≡ a ↑i−1 z, then a ↑i b ≡ f b(1). Thus a ↑i b is defined.

This completes the induction step and the proof.
�
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Theorem 8 Assume a ↑k z has a non-superattracting fixed point and is not
non-Diophantine, where 0 < k ≤ m and k,m ∈ Z+. Given that the hyperopera-
tor a ↑m b is defined, where a, b ∈ C, then it is unique up to a fixed point.

Proof. Let f(z) ≡ a ↑m−1 z, then a ↑m b ≡ f b(1). Since f(z) has a non-
superattracting fixed point and is not non-Diophantine, Theorem 2 is true prov-
ing the hyperoperator a ↑m b is unique up to a fixed point.

�
Just as the logarithm is multivalued, the different fixed points of tetration

and the higher hyperoperations result in them being multivalued. The inability
to linearize values of a that are non-Diophantine, combined with the collection
of fixed points for each a ↑k z, where 0 < k ≤ m and k,m ∈ Z+.

Theorem 9 The inverse function of a ↑m z can be constructed.

Proof. Let f(z) = a ↑m z, then from Theorem 4, f−1(z) can be constructed.
�
Below is an example of how the hyperoperators can be extended to the real

numbers where the fixed points are all real:

√
2 ↑2 ∞ = 2√
2 ↑3 ∞ = 1.54912√
2 ↑4 ∞ = 1.48436√
2 ↑5 ∞ = 1.45915√
2 ↑6 ∞ = 1.44615 (11)

4 Concluding Remarks

The Taylor series of iterated functions as derived only requires that the function
to be iterated is holomorphic and has a fixed point. While there are important
cases where the iterator can take on real and complex values, if there is a
completely general case where maps can be proven to have flows, it is beyond
the scope of the mathematics presented in this paper. Also, the scope of the
paper is limited to the iteration of complex functions; future research may be
able to extend the results presented here to more general functions.

Future research may also investigate the combinatorial basis of iterated func-
tions. Just as set partitions form the combinatorial basis of composite functions,
preliminary research indicates that total partitions[6], also known as Schröder’s
Fourth Problem, form the combinatorial basis of iterated functions. Mathe-
matica code has been written that evaluates the individual total partitions for
their associated analytic expression, but the code only works for the first six
derivatives of an iterated function.

A major issue regarding extending tetration is the uniqueness of the solution.
A stock answer about extending tetration, given on math websites, is that there
are a number of proposed solutions. The solution presented here for extending
tetration and the hyperoperators is guaranteed to be consistent with the values
of tetration and the hyperoperators for the natural numbers. Along with the
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Theorem 4 these two conditions uniquely extend tetration and the hyperoper-
ators to the complex numbers. Experimental results appear to be consistent
with the results from [1].
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